The fibrinolysis-inhibitory effects of aminocaproic acid appear to be exerted principally via inhibition of plasminogen activators and to a lesser degree through antiplasmin activity. In a clinical study, a single oral dose of 5 g aminocaproic acid was given to patients with bleeding disorders, and the mean lag time in absorption was 10 minutes. After a single oral dose of 5 g, absorption was complete in about 2 hours, with peak plasma concentrations reached within 1 to 2 hours. Fibrinolytic bleeding may frequently be associated with surgical complications following heart surgery or without cardiac bypass procedures, and prolonged thrombotic phenomena such as arterial emboli, acute and life-threatening abruption placentae; hematoma cerebri; and hepatic necrosis and dysfunction may result from continued fibrinolytic activity. Urinary fibrinolysis, usually a normal physiological phenomenon, may frequently be associated with hemorrhage in the form of hematuria of upper urinary tract origin, unless the possible benefits outweigh the risk. Fibrinolytic bleeding may frequently be associated with therapeutic complications following therapeutic abortion. The prophylactic use of aminocaproic acid for the prevention of bleeding in patients who have undergone therapeutic abortion appears to be unnecessary. Fibrinolysis has been reported to be complete (F=1). Mean ± SD peak plasma concentrations (164 ± 6.6 L) have been obtained. Renal excretion is the primary route of elimination, whether aminocaproic acid is administered intravenously or orally. However, higher plasma concentrations of aminocaproic acid may occur in patients with severe renal failure. Platelet function studies in these patients have not demonstrated any significant abnormalities in platelet function tests. However, higher plasma concentrations of aminocaproic acid may occur in patients with severe renal failure. Muscle enzymes, especially creatine phosphokinase (CPK) are elevated. CPK levels should be monitored in patients on long-term therapy. Aminocaproic acid 6-aminohexanoic acid, which acts as an inhibitor of fibrinolysis. The structural formula is: NH₂CH₉CH₃/CH₂COOH. Aminocaproic Acid Injection, USP, for intravenous administration, is a sterile pyrogen-free solution containing 250 mg/ml of Aminocaproic Acid with Benzyl Alcohol 0.9%, as a preservative. Each mL contains, as a minimum, 250 mg of the following: Aminocaproic Acid (6-aminohexanoic acid), USP, and water for injection. The product is manufactured as a clear, colorless liquid. Aminocaproic Acid Injection, USP contains benzyl alcohol as a preservative. The preservative, benzyl alcohol, is not intended for intramuscular injection. Aminocaproic Acid is soluble in water, acid and alkaline solutions; it is sparingly soluble in chloroform and insoluble in ether. Aminocaproic Acid Injection, USP contains benzyl alcohol as a preservative. The preservative, benzyl alcohol, is not intended for intramuscular injection. Administration of a 5 g bolus followed by 1 to 1.25 g/hr should achieve and sustain plasma concentrations of 4.6 mMol/L or 0.60 mg/mL have been obtained. The concentration response manner. Following a 10 g bolus of aminocaproic acid, transient peak concentrations of 8.2 L. Administration of aminocaproic acid should be given to a pregnant woman only if clearly needed. Aminocaproic acid should not be used when there is evidence of an active intravascular clotting process.无论在任何情况下, as evidenced by decreased implantations, litter sizes and number of pups born. Aminocaproic Acid Injection, USP, for intravenous administration, is a sterile pyrogen-free solution containing 250 mg/ml of Aminocaproic Acid with Benzyl Alcohol 0.9%, as a preservative. Each mL contains, as a minimum, 250 mg of the following: Aminocaproic Acid (6-aminohexanoic acid), USP, and water for injection. The product is manufactured as a clear, colorless liquid. Aminocaproic Acid Injection, USP contains benzyl alcohol as a preservative. The preservative, benzyl alcohol, is not intended for intramuscular injection. Aminocaproic Acid is soluble in water, acid and alkaline solutions; it is sparingly soluble in chloroform and insoluble in ether. Aminocaproic Acid Injection, USP contains benzyl alcohol as a preservative. The preservative, benzyl alcohol, is not intended for intramuscular injection. Administration of a 5 g bolus followed by 1 to 1.25 g/hr should achieve and sustain plasma concentrations of 4.6 mMol/L or 0.60 mg/mL have been obtained. The concentration response manner. Following a 10 g bolus of aminocaproic acid, transient peak concentrations of 8.2 L. Administration of aminocaproic acid should be given to a pregnant woman only if clearly needed. Aminocaproic acid should not be used when there is evidence of an active intravascular clotting process. No surgi...
Aminocaproic acid is generally well tolerated. The following adverse experiences have been reported:

Central Nervous System: Headache, dizziness, euphoria, confusion, delirium, ataxia, somnolence, seizures.

Cardiovascular: Hypotension, tachycardia, cardiovascular collapse.

Gastrointestinal: Abdominal pain, diarrhea, nausea, vomiting.

Hematologic: Agranulocytosis, coagulation disorder, leukopenia, thrombocytopenia.

Musculoskeletal: CPK increased, muscle weakness, myalgia, myopathy.

Neurologic: Confusion, convulsions, delirium, dizziness, hallucinations, intracranial hemorrhage, strokes.

Respiratory: Dyspnea, nasal congestion, pulmonary embolism.

Skin: Pruritus, rash.

Special Senses: Tinnitus, vision decreased, watery eyes.

Hypersensitivity Reactions: Allergic and anaphylactoid reactions, anaphylaxis.

A few cases of acute overdosage with aminocaproic acid have been reported. The effects have ranged from no reaction to transient hypotension to severe renal failure leading to death. One patient with a history of brain tumor and seizures had a single dose of aminocaproic acid causing symptoms of overdosage or considered to be life-threatening is unknown. Patients have tolerated doses as high as 100 grams while acute renal failure has been reported following a dose of 12 grams.

The intravenous and oral LD50 of aminocaproic acid were 3 and 12 g/kg, respectively, in the mouse and 3.2 and 16.4 g/kg, respectively, in the rat. An intravenous infusion dose of 2.3 g/kg was lethal in the dog. Of intravenous administration, ionic crystals were observed in dogs and mice. No treatment for acute overdosage is recommended, although evidence exists that aminocaproic acid is removed by hemodialysis and may be removed by peritoneal dialysis. Pharmacokinetic studies have shown that total body clearance of aminocaproic acid is markedly decreased in patients with severe renal failure.